an abstract image featuring gradient transitions between various shades of blue

IRIS Publications

A collection of IRIS-related publications by IRIS Members

Publications by IRIS Members

  1. 2025

    1. Ron, G., Schreck, A., Kropp, C., Menges, A., & Wortmann, T. (2025). Sensor-Driven Human–Robot Collaboration for Timber Assembly: A Cyber-Physical Approach Tested with Diverse Participants. In G. Caldwell, B. Tag, & J. Andres (eds.), Proceedings of the 37th Australian Conference on Human-Computer Interaction (HCI) (OZCHI ’25), November 29--December 03, 2025, Sydney, Australia. ACM. https://doi.org/10.1145/3764687.3769950
    2. Ron, G., Leder, S., Siriwardena, L., Kropp, C., Menges, A., & Wortmann, T. (2025). Designing for Diversity: a feminist technoscience and behavioural fabrication approach in human--robot collaboration education for Industry 5.0. Construction Robotics, 9, Article 2. https://doi.org/10.1007/s41693-025-00164-y
    3. Wirzberger, M., Bareiß, L., & Baybüyük, L. A. (2025, August). Rotating in space? A feasibility study on performance gains and technology acceptance in VR-based spatial working memory training with neurodivergent adults. https://doi.org/10.1145/3743049.3748584
    4. Vorreuther, A., Tagalidou, N., Lingelbach, K., Bareiß, L., Wirzberger, M., & Vukelić, M. (2025). Exploring Neuroadaptivity for Virtual-Reality-Based Cognitive Skill Training in Autistic Adults. MuC ’25: Proceedings of the Mensch Und Computer 2025, 571–577. https://doi.org/10.1145/3743049.3748574
    5. Schneider, M., & Hagendorff, T. (2025). Investigating toxicity and bias in stable diffusion text-to-image models. Scientific Reports, 15, Article 1. https://doi.org/10.1038/s41598-025-12032-4
    6. Dönmez, E., & Falenska, A. (2025). ``I understand your perspective″: LLM Persuasion through the Lens of Communicative Action Theory. In W. Che, J. Nabende, E. Shutova, & M. T. Pilehvar (Eds.), Findings of the Association for Computational Linguistics: ACL 2025 (pp. 15312–15327). Association for Computational Linguistics. https://doi.org/10.18653/v1/2025.findings-acl.793
    7. Obaidi, M., Bergh, R., Ozer, S., & Sindermann, C. (2025). Toward an Integrated Psychological Model of Violent Extremism. European Review of Social Psychology, 1–50. https://doi.org/10.1080/10463283.2025.2478735
    8. Ron, G., Wortmann, T., Kropp, C., & Menges, A. (2025). Human-Robot Reconfigurations: Advancing Feminist Technoscience Perspectives for Human-Robot-Collaboration in Architecture and Construction. In M. Kanaani (Ed.), The Routledge Companion to Smart Design Thinking in Architecture & Urbanism Fora Sustainable, Living Planet (1st edition, pp. 669–679). Routledge, Taylor & Francis Group. https://doi.org/10.4324/9781003384113-72
    9. Bareiß, L., Wansitler, L., Schwarten, A., & Wirzberger, M. (2025). Understanding neurodiverse cognitive-affective functioning in a multimodal technology-mediated framework: Ethical guidelines and human-centered design implications. In J. Tröge, J. Stepczynski, H. Wiesner, & C. Runde (Eds.), Virtuelle Beteiligung, reale Teilhabe. Transformative Technologien für eine inklusivere Gesellschaft (pp. 143–165).
    10. Wirzberger, M., Bareiß, L., & Baybüyük, L. (2025). Starke Vielfalt im Kopf: Wie Neurodiversität unser Zusammenleben bereichern kann und wie wir damit in Arbeit und Bildung umgehen können. Neue Akzente, 130, 5–7.
    11. Hagendorff, T., Derner, E., & Oliver, N. (2025). Large Reasoning Models Are Autonomous Jailbreak Agents. https://arxiv.org/abs/2508.04039
    12. Schmitz-Hübsch, A., Bareiß, L., Jahn, E., & Wirzberger, M. (2025). eduScrum meets focUS: A computer-assisted training to promote selfregulation skills in Higher Education. Frontiers in Computer Science, 7, 1593889. https://doi.org/10.3389/fcom.2025.1593889
    13. Jotautaitė, M., Caviola, L., Brewster, D. A., & Hagendorff, T. (2025). Speciesism in AI: Evaluating Discrimination Against Animals in Large Language Models. https://arxiv.org/abs/2508.11534
    14. Lorrig, P., Fini, M., Lux, L., Wirzberger, M., & Daw, Z. (2025). Assessing an evaluation framework for Human-AI-Teaming in flight deck applications. 44th AIAA DATC/IEEE Digital Avionics Systems Conference.
    15. Menke, M., & Hagendorff, T. (2025). PRIDE -- Parameter-Efficient Reduction of Identity Discrimination for Equality in LLMs. https://arxiv.org/abs/2507.13743
    16. Hagendorff, T., & Fabi, S. (2025). Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models. https://arxiv.org/abs/2504.10615
    17. Wirzberger, M., Bareiß, L., Herbst, V., Stock, A., & Kembitzky, J. (2025). Performance expectancy benefits acceptance towards digital support for self-regulation. Acta Psychologica, 258, 105273. https://doi.org/10.1016/j.actpsy.2025.105273
    18. Vaugrante, L., Carlon, F., Menke, M., & Hagendorff, T. (2025). Compromising Honesty and Harmlessness in Language Models via Deception Attacks. https://arxiv.org/abs/2502.08301
    19. Hagendorff, T. (2025). On the Inevitability of Left-Leaning Political Bias in Aligned Language Models. https://arxiv.org/abs/2507.15328
  2. 2024

    1. Sindermann, C. (2024). Uncovering latent profiles of political news consumers and their associations with political views and their extremity. Discover Psychology, 4, Article 1. https://doi.org/10.1007/s44202-024-00315-2
    2. Sindermann, C. (2024). Who thinks the media is hostile?! An examination of individual differences predicting the hostile media effect concerning news media coverage of individuals with a migratory background in Germany. Current Psychology, 43, Article 47. https://doi.org/10.1007/s12144-024-07005-1
    3. Ðula, I., Berberena, T., Keplinger, K., & Wirzberger, M. (2024). From challenges to opportunities: navigating the human response to automated agents in the workplace. Humanities and Social Sciences Communications. https://doi.org/10.1057/s41599-024-03962-x
    4. Knuples, U., Falenska, A., & Miletić, F. (2024). Gender Identity in Pretrained Language Models: An Inclusive Approach to Data Creation and Probing. In Y. Al-Onaizan, M. Bansal, & Y.-N. Chen (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2024 (pp. 11612–11631). Association for Computational Linguistics. https://aclanthology.org/2024.findings-emnlp.680
    5. Dönmez, E., Vu, T., & Falenska, A. (2024). Please note that I’m just an AI: Analysis of Behavior Patterns of LLMs in (Non-)offensive Speech Identification. In Y. Al-Onaizan, M. Bansal, & Y.-N. Chen (Eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (pp. 18340–18357). Association for Computational Linguistics. https://aclanthology.org/2024.emnlp-main.1019
    6. Sindermann, C. (2024). Relations between different components of group identification and types of social media political participation in the context of the Fridays for Future movement. Personality and Individual Differences, 230, 112773. https://doi.org/10.1016/j.paid.2024.112773
    7. Erhard, L., Hanke, S., Remer, U., Falenska, A., & Heiberger, R. H. (2024). PopBERT. Detecting Populism and Its Host Ideologies in the German Bundestag. Political Analysis. https://doi.org/10.1017/pan.2024.12
    8. Hillebrand, M. C., Sindermann, C., Montag, C., Wuttke, A., Heinzelmann, R., Haas, H., & Wilz, G. (2024). Salivary cortisol and alpha-amylase as stress markers to evaluate an individualized music intervention for people with dementia: feasibility and pilot analyses. BMC Research Notes, 17, Article 1. https://doi.org/10.1186/s13104-024-06904-7
    9. Brandenstein, N., Montag, C., & Sindermann, C. (2024). To Follow or Not to Follow: Estimating Political Opinion From Twitter Data Using a Network-Based Machine Learning Approach. Social Science Computer Review. https://doi.org/10.1177/08944393241279418
    10. Kaiser, J., & Falenska, A. (2024). How to Translate SQuAD to German? A Comparative Study of Answer Span Retrieval Methods for Question Answering Dataset Creation. In P. H. Luz de Araujo, A. Baumann, D. Gromann, B. Krenn, B. Roth, & M. Wiegand (Eds.), Proceedings of the 20th Conference on Natural Language Processing (KONVENS 2024) (pp. 134–140). Association for Computational Linguistics. https://aclanthology.org/2024.konvens-main.15
    11. Chen, H., Roth, M., & Falenska, A. (2024). What Can Go Wrong in Authorship Profiling: Cross-Domain Analysis of Gender and Age Prediction. In A. Faleńska, C. Basta, M. Costa jussà, S. Goldfarb-Tarrant, & D. Nozza (Eds.), Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP) (pp. 150–166). Association for Computational Linguistics. https://aclanthology.org/2024.gebnlp-1.9
    12. Ron, G., Menges, A., & Wortmann, T. (2024). Critical Collaboration: Reflecting on Power and Agency in Human-Robot-Collaboration in Architecture and Construction, for a Diverse and Democratic Practice. In P. Eversmann, C. Gengnagel, J. Lienhard, M. Ramsgaard Thomsen, & J. Wurm (eds.), DESIGN MODELLING SYMPOSIUM KASSEL 2024 – SCALABLE DISRUPTORS (re)new(able) materials and circular design and construction processes (No. 1; Vol. 1, pp. 191–204). Springer. https://doi.org/10.1007/978-3-031-68275-9_16
    13. Costa jussà, M., Andrews, P., Basta, C., Ciro, J., Falenska, A., Goldfarb-Tarrant, S., Mosquera, R., Nozza, D., & Sánchez, E. (2024). Overview of the Shared Task on Machine Translation Gender Bias Evaluation with Multilingual Holistic Bias. In A. Faleńska, C. Basta, M. Costa jussà, S. Goldfarb-Tarrant, & D. Nozza (Eds.), Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP) (pp. 399–404). Association for Computational Linguistics. https://aclanthology.org/2024.gebnlp-1.26
    14. Faleńska, A., Basta, C., Costa jussà, M., Goldfarb-Tarrant, S., & Nozza, D. (2024). Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP). Association for Computational Linguistics. https://aclanthology.org/2024.gebnlp-1.0
    15. Go, P., & Falenska, A. (2024). Is there Gender Bias in Dependency Parsing? Revisiting ``Women’s Syntactic Resilience″. In A. Faleńska, C. Basta, M. Costa jussà, S. Goldfarb-Tarrant, & D. Nozza (Eds.), Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP) (pp. 269–279). Association for Computational Linguistics. https://aclanthology.org/2024.gebnlp-1.17
    16. Sardari, S., Sevim, S., Zhang, P., Ron, G., Leder, S., Menges, A., & Wortmann, T. (2024). Deep Agency: Towards human guided robotic training for assembly tasks in timber construction. In &. G. W. Odysseas Kontovourkis, Marios C. Phocas (ed.), Proceedings of the 42 (No. 420; Vol. 1, pp. 193–202). eCAADe (Education and Research in Computer Aided Architectural Design in Europe). https://papers.cumincad.org/data/works/att/ecaade2024_420.pdf
    17. Babiker, A., Alshakhsi, S., Sindermann, C., Montag, C., & Ali, R. (2024). Examining the growth in willingness to pay for digital wellbeing services on social media: A comparative analysis. Heliyon, 10, Article 11. https://doi.org/10.1016/j.heliyon.2024.e32467
    18. Falenska, A., Vecchi, E. M., & Lapesa, G. (2024). Self-reported Demographics and Discourse Dynamics in a Persuasive Online Forum. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 14606–14621). ELRA and ICCL. https://aclanthology.org/2024.lrec-main.1272
    19. Sindermann, C., Löchner, N., Heinzelmann, R., Montag, C., & Scholz, R. W. (2024). The Revenue Model of Mainstream Online Social Networks and Potential Alternatives: A Scenario-Based Evaluation by German Adolescents and Adults. Technology in Society, 102569. https://doi.org/10.1016/j.techsoc.2024.102569
    20. Kannen, C., Sindermann, C., & Montag, C. (2024). On the willingness to pay for the messenger WhatsApp taking into account personality and sent/received messages. Heliyon, e28840. https://doi.org/10.1016/j.heliyon.2024.e28840
    21. Scholz, R. W., Köckler, H., Zscheischler, J., Czichos, R., Hofmann, K.-M., & Sindermann, C. (2024). Transdisciplinary knowledge integration PART II: Experiences of five transdisciplinary processes on digital data use in Germany. Technological Forecasting and Social Change, 199, 122981. https://doi.org/10.1016/j.techfore.2023.122981
    22. Hagendorff, T. (2024). Mapping the Ethics of Generative AI: A Comprehensive Scoping Review. arXiv, 1–25. https://arxiv.org/abs/2402.08323
    23. Zermiani, F., Dhar, P., Strohm, F., Baumbach, S., Bulling, A., & Wirzberger, M. (2024). Individual differences in visuo-spatial working memory capacity and prior knowledge during interrupted reading. Frontiers in Cognition, 3. https://doi.org/10.3389/fcogn.2024.1434642
    24. Sindermann, C., Montag, C., & Elhai, J. D. (2024). The Degree of Homogeneity Versus Heterogeneity in Individuals’ Political News Consumption - https://econtent.hogrefe.com/doi/abs/10.1027/1864-1105/a000417?journalCode=zmp. Journal of Media Psychology. https://doi.org/10.1027/1864-1105/a000417
    25. Berberena, T., & Wirzberger, M. (2024). Momentary emotional states and trust in a faulty chatbot: An experimental study. 53rd Congress of the German Society for Psychology / 15th Congress of the Austrian Psychological Society.
    26. Vaugrante, L., Niepert, M., & Hagendorff, T. (2024). A Looming Replication Crisis in Evaluating Behavior in Language Models? Evidence and Solutions. https://arxiv.org/abs/2409.20303
    27. Scholz, R. W., Zscheischler, J., Köckler, H., Czichos, R., Hofmann, K.-M., & Sindermann, C. (2024). Transdisciplinary knowledge integration – PART I: Theoretical foundations and an organizational structure. Technological Forecasting and Social Change, 202, 123281. https://doi.org/10.1016/j.techfore.2024.123281
    28. Hagendorff, T. (2024). Deception abilities emerged in large language models. Proceedings of the National Academy of Sciences, 121, Article 24. https://doi.org/10.1073/pnas.2317967121
    29. Berberena, T., & Wirzberger, M. (2024). Exploring affective states and trust in a faulty chatbot. Human Factors and Ergonomics Society Europe Chapter – Annual Meeting 2024, 7.
    30. Jalali Farahani, F., Hanke, S., Dima, C., Heiberger, R. H., & Staab, S. (2024). Who is targeted? Detecting social group mentions in online political discussions. Companion Publication of the 16th ACM Web Science Conference, 24–25. https://doi.org/10.1145/3630744.3658412
    31. Schneider, M., & Hagendorff, T. (2024). When Image Generation Goes Wrong: A Safety Analysis of Stable Diffusion Models. https://arxiv.org/abs/2411.15516
To the top of the page